skip to main content


Search for: All records

Creators/Authors contains: "Baykal-Gürsoy, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Filipe, J. ; Ghosh, A. ; Prates, R. O. ; Zhou, L. (Ed.)
    This paper considers a parallel wireless network in which multiple individuals exchange confidential information through independent sender-receiver links. An eavesdropper can intercept encrypted information through a degraded channel of each sender-receiver link. A friendly jammer, by applying interference to the eavesdropping channels, can increase the level of secrecy of the network. The optimal power allocation strategy of the friendly jammer under a power constraint is derived. A convex optimization model is used when all channels are under the threat of an eavesdropping attack and a non-zero sum game model is analyzed when the eavesdropper can only attack a limited quantity of channels. 
    more » « less
  2. null (Ed.)
    Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while the eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero-sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies. 
    more » « less